The centroid of an equilateral triangle is the intersection point of its medians, which is also the center of mass of the triangle. The medians are the line segments that connect each vertex to the midpoint of the opposite side. The centroid divides each median into two segments, with the length of the segment that is closer to the vertex being twice as long as the other segment. The centroid is located two-thirds of the distance from each vertex to the midpoint of the opposite side. The centroid of an equilateral triangle is equidistant from each vertex and lies inside the triangle. It has a number of interesting properties, such as being the point of intersection of the triangle's three medians, and the point where the triangle can be balanced on the tip of a pencil.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page